Human Cytomegalovirus-Associated Periodontitis in Renal Transplant Patients

H. Nowzari, M.G. Jorgensen, S. Aswad, N. Khan, E. Osorio, A. Safarian, H. Shidban, and S. Munroe

ABSTRACT

Background. Human cytomegalovirus (HCMV) infection is associated with renal transplant failure. Periodontal pockets may be reservoirs for HCMV replication.

Objectives. This study was done to determine active HCMV replication in saliva and gingival crevicular fluid of renal transplant patients affected by periodontitis.

Methods. HCMV pp67-mRNA amplification was analyzed in oral fluids of 38 transplant recipients at 6 months’ posttransplantation. Patients received antiviral therapy until 3 months’ posttransplantation. The HCMV-positive cell line VR-977 was the positive control, and oral fluids from healthy volunteers served as the negative control. Periodontitis was diagnosed by clinical examination. Serum HCMV IgG and IgM were analyzed to differentiate recent and latent infection.

Results. Prevalence of gingival overgrowth was 68.4%. HCMV gene transcripts were detected in the saliva of 21% and the gingival crevicular fluid of 18% of patients. All patients (100%) with HCMV pp67-mRNA detected in saliva demonstrated clinical manifestations of viral infection, as did 86% of patients with HCMV pp67-mRNA detected in the gingival crevicular fluid. Serum IgM was positive in 7.9% of patients and IgG in 65.8%; however, associations with active mRNA replication were not statistically significant.

Conclusions. Renal transplant patients affected by periodontitis are at risk of viral replication within the periodontal tissues despite antiviral therapy. This study suggests that use of HCMV pp67-mRNA detection in saliva and gingival crevicular fluid provides markers of active viral infection, and evidence for a link between HCMV-associated periodontitis and renal transplant complications.
portant risk factor for the occurrence of cytomegalic endothelial cells in blood during HCMV infection ($P < .001$).

Recent studies by Contreras et al$^{5-7}$ have presented strong evidence for the role of herpesviruses in the pathogenesis of human periodontal disease. Hanookai et al6 studied active periodontitis lesions in 19 trisomy-21 patients detecting HCMV in 5 (26%) patients. In healthy periodontal sites, only one revealed HCMV. Subgingival debris were obtained by using a combination of hand and ultrasonic instruments did not reduce the presence of genomic herpesvirus. The investigators suggested that viral infection may reduce periodontal defense mechanisms and promote growth of putative periodontopathic bacteria such as *Treponema denticola*, *Bacteroides forsythus*, *Prevotella intermedia*, and *Capnocytophaga* species. Viral-bacterial co-infections were observed in trisomy-21–associated destructive periodontal disease. HCMV–Actinobacillus actinomycetemcomitans co-infection in localized aggressive periodontitis was reported by Nowzari et al in a patient suffering from Fanconi anemia.9

Contreras et al10 examined biopsies of periodontitis lesions from 20 adults and detected HCMV in periodontal tissue biopsies and gingival cell fractions separated by immunomagnetic cell sorting. Periodontitis-derived monocytes and macrophages revealed HCMV in 11 (55%) patients. T lymphocytes harbored HCMV in 4 (20%) patients. The researchers suggested that HCMV mainly infects periodontal monocytes, macrophages, and less frequently T lymphocytes.

In a follow-up study, HCMV was detected in 9 (64%) periodontal pocket samples and 12 (86%) gingival tissue samples obtained from periodontitis patients by Contreras et al, who confirmed the frequent presence of HCMV in periodontitis lesions.11

Medications used in transplantation seem to potentiate gingival overgrowth.1,2,13 Explanatory hypotheses include drug-induced gingival fibroblast proliferation, impaired collagen degradation, deficiency in collagen phagocytosis by fibroblasts, impaired collagenase activity, intracellular calcium imbalance, and nitric oxide activity and production. Thomason et al14 and Yamada et al15 reported altered expression of MMP-1 and TIMP-1, important mediators of periodontal collagen, by cyclosporine (CyA), an antirejection immunosuppressive agent in allogenic organ transplantation. Cyclosporine primarily suppresses the cell-mediated immune system and inhibits the production and release of cytokines. The specific lymphocytes that are inhibited are the T-helper cells.

Based on available information, it seems reasonable to hypothesize that periodontal pockets may be important reservoirs for HCMV infection in organ transplant patients affected by periodontitis. The objective of this study was to determine active HCMV replication in saliva and gingival crevicular fluid of renal transplant patients affected by periodontitis and to relate these findings to clinical viral infection.

MATERIALS AND METHODS

The protocol for this investigation was approved by the Internal Review Board of the University of Southern California. Thirty-eight renal transplant recipients (14 women, 24 men; ages: 18 to 65 years) participated after giving written informed consent. Medical history and current medications were determined by chart review and patient interview. All patients had received 200 to 400 mg Zovirax, acyclovir, or ganciclovir per day as prophylactic antiviral therapy for the first 3 months posttransplantation and were currently receiving CyA as a component of a triple immunosuppressive regimen. Following clinical examination, a dichotomous scoring system was used to record gingival overgrowth by calibrated periodontists (100% reproducibility). Demographic data were obtained from medical charts and by interview. Saliva and gingival crevicular fluid samples were collected at least 6 months posttransplantation and processed using automated NucliSens Extractor protocol for nucleic acid isolation. Saliva was collected using sterile cotton swabs; gingival crevicular fluid was obtained by placing sterile endodontic paper points subgingivally in three sites per patient. Amplification and detection of HCMV–pp67–RNA followed the protocol of kit modules of CMV mRNA assay. The HCMV-positive cell line VR-977 was used as the positive control. Saliva and gingival crevicular fluid from healthy volunteers served as the negative control. Serum samples were analyzed for HCMV immunoglobulin G (IgG) and immunoglobulin M (IgM).

Viral Examination

Extraction of nucleic acid. Saliva was collected on sterile cotton swabs, and gingival crevicular fluid was collected on sterile endodontic paper points. Cotton swabs or paper points were placed in 900 μL of nucleic acid sequence-based amplification (NASBA) lysis buffer (4.7 mol/L guanidium thiocyanate; 46 mmol/L Tris at pH 6.4; 20 mmol/L EDTA; 1.2% Triton X-100) (BioMerieux). Samples were either frozen at -70°C until further use or processed immediately for nucleic acid extraction. Frozen samples were thawed at 37°C. After addition of silica and a standard amount of system control (SC) RNA, which served as positive control for isolation, amplification, and detection of RNA during the NASBA procedure, samples were homogenized by vortexing. Samples were washed once with wash buffer and loaded on an automated nucleic acid extractor. Total nucleic acid was eluted in 50 μL of TE buffer and stored at -70°C.

Amplification. The NASBA amplification reaction was performed with two primers that were designed to amplify part of the mRNA encoding HCMV pp67 (the UL 65 gene product). The NASBA reactions were carried out in a 20-μL reaction mixture containing 40 mmol/L Tris at pH 8.5, 12 mmol/L MgCl$_2$, 70 mmol/L KCl, 15% dimethyl sulfoxide, 5 mmol/L dithiothreitol, each denucleoside triphosphate at a concentration of 1 mmol/L, 0.08U of RNase H, 32U of T7 RNA polymerase, 6.4U of avian myeloblastosis reverse transcriptase, and 5 mL of nucleic acids. Prior to the addition of enzymes, the NASBA reaction mixtures were incubated for 5 minutes at 65°C to destabilize the secondary RNA structures and then cooled for 5 minutes to 4°C to allow primer annealing. Following the addition of enzymes, the reaction mixtures were incubated at 41°C for 90 minutes and then stored at -70°C.

Detection. The amplification products (wild-type and SC RNA) were then placed in detection diluent and incubated for 30 minutes at 41°C with a biotinylated pp67–specific capture probe bound to 5 μg streptavidin-coated magnetic beads and 3×10^{11} molecules of ruthenium-labeled oligonucleotide detection probe.
These probes were specific for either pp67-mRNA or SC RNA. As a negative control, the detection diluent was also incubated with the wild-type RNA probe and the oligonucleotide bound to magnetic beads. Following incubation and addition of an assay buffer solution, the tubes were placed in an electrochemiluminescence instrument (NASBA QR System, bioMerieux) for final reading of the results.

RESULTS

The HCMV-active gene transcripts were detected in saliva of 8 (21%) and gingival crevicular fluid of 7 (18%) patients. Prevalence of gingival overgrowth was 68.4% (n = 26). The IgG serum antibodies for HCMV were detected in 25 patients (65.8%); IgM serum antibodies for HCMV were detected in 3 patients (7.9%). There was no statistically significant association between IgM and IgG HCMV mRNA and salivary/crevicular fluid HCMV mRNA.

Clinical viral infections were observed in 15 patients (39.5%), all of whom were diagnosed with gingival overgrowth (P < .00001).

The Fishers exact test assessed statistically significant associations between clinical viral infection and detection of HCMV pp67-mRNA in either saliva (P = .0001) or in gingival crevicular fluid (P = 0.01) (Table 1). Active viral infection and clinical complications did not show a statistically significant association with age (Wilcoxon rank sum test, P > .05). There was also no statistically significant association between active viral detection and any of the three following medications: prednisone, Norvasc (amlo-

Table 1. Associations Between Clinical Viral Infection and Detection of HCMV mRNA in Saliva and Gingival Crevicular Fluid

<table>
<thead>
<tr>
<th>Clinical Viral Infection</th>
<th>Saliva positive</th>
<th>Gingival crevicular fluid positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCMV mRNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>23 (77)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Yes</td>
<td>7 (23)</td>
<td>8 (100)</td>
</tr>
<tr>
<td>P Value</td>
<td>.0001*</td>
<td>.1*</td>
</tr>
</tbody>
</table>

*Two-sided P value for the Fisher exact test.

DISCUSSION

Renal transplant patients affected by periodontitis are at risk of harboring active HCMV regardless of prior prophylactic antiviral therapy. Although patients in the present study received systemic antiviral therapy for the first 3 months posttransplantation, overgrown gingival tissue and periodontal pockets were sites of active HCMV replication.

The danger of CMV infections for organ transplant patients has been extensively reported. Yilmaz et al, in a controlled study using rats, observed a significant increase in acute rejection episodes and complications in RCMV-infected transplant recipients. Rosen and co-workers reported that CMV genotype B was associated with an increased frequency of systemic infection leading to rejection of liver transplants. Jeejeebhoy described an episode of CMV-associated thrombotic microangiopathy 6 weeks posttransplantation followed by CMV-associated pneumonitis. Subsequent treatment of the CMV infection resolved the thrombotic microangiopathy. Peggs et al proposed extended PCR surveillance and pre-emptive anti-CMV therapy after transplantation to decrease the morbidity associated with prolonged ganciclovir administration.

In the present study, transplant complications requiring urgent hospitalization were observed in 15 patients. All of these patients were diagnosed with gingival overgrowth and periodontitis. HCMV-associated periodontitis was diagnosed in 6 of these patients. Active viral infection was detected in four saliva samples and in three gingival crevicular fluid samples from areas of gingival overgrowth. Overgrown gingival tissue may be an indicator of viral activity and the oral cavity may serve as a reservoir for the virus at times when it is not detected in the serum.

The incidence of CyA-associated gingival overgrowth is reported to vary from 27% to 49%. The higher prevalence of gingival overgrowth diagnosed in the present study (68.4%) may be related to the dichotomous scoring system employed. Patients affected by small or localized zones of gingival overgrowth were scored positive. The present findings are in accordance with previously reported higher prevalence of gingival overgrowth in females (72.2% in females vs 64.7% of males).

Yamasaki and colleagues in 1987 reported increased proportions of microfilament bands, nuclear indentations, and basal lamina-associated stromal junctions in CyA-associated gingival overgrowth. A rise in the cellular production of type I procollagen has been hypothesized.

The prevalence of gingival overgrowth will likely increase as organ transplantation is performed more frequently. Additionally, CyA is currently used in the treatment of type 1 diabetes, systemic lupus erythematosus, psoriasis, rheumatoid arthritis, and multiple sclerosis. Patients exhibiting different degrees of gingival overgrowth showed similar drug levels, leading Varga to conclude that the differences were due to variable patients rather than to cytoplasmic enlargement. In the present study, active viral infection and posttransplant clinical complications did not show a statistically significant association with age.

The present study has described a detection method and identified a potential reservoir for HCMV, which may prove to have long-term implications for organ transplant...
recipients. A statistically significant association between viral infection and salivary \((P = .0001)\) and gingival crevicular fluid densities of active HCMV pp67-mRNA was shown. \((P = .01)\), emphasizing their diagnostic value. Saliva can be used to detect pp67-mRNA as a marker for active HCMV infection in renal transplant patients.

The results of the current study clearly demonstrate an association between periodontal status and potential renal transplant complications. It would seem prudent for transplant candidates to receive a thorough periodontal examination, including analysis of saliva and gingival crevicular fluid for active HCMV infection. Following transplantation, frequent monitoring of a recipient’s periodontal health (and promptly rendered appropriate treatment) may reduce the risk of transplant complications due to HCMV infection. Long-term prospective studies are needed to clarify the magnitude of these benefits.

REFERENCES